RNA-binding specificity of E. coli NusA
نویسندگان
چکیده
The RNA sequences boxA, boxB and boxC constitute the nut regions of phage lambda. They nucleate the formation of a termination-resistant RNA polymerase complex on the lambda chromosome. The complex includes E. coli proteins NusA, NusB, NusG and NusE, and the lambda N protein. A complex that includes the Nus proteins and other factors forms at the rrn leader. Whereas RNA-binding by NusB and NusE has been described in quantitative terms, the interaction of NusA with these RNA sequences is less defined. Isotropic as well as anisotropic fluorescence equilibrium titrations show that NusA binds only the nut spacer sequence between boxA and boxB. Thus, nutR boxA5-spacer, nutR boxA16-spacer and nutR boxA69-spacer retain NusA binding, whereas a spacer mutation eliminates complex formation. The affinity of NusA for nutL is 50% higher than for nutR. In contrast, rrn boxA, which includes an additional U residue, binds NusA in the absence of spacer. The K(d) values obtained for rrn boxA and rrn boxA-spacer are 19-fold and 8-fold lower, respectively, than those for nutR boxA-spacer. These differences may explain why lambda requires an additional protein, lambda N, to suppress termination. Knowledge of the different affinities now describes the assembly of the anti-termination complex in quantitative terms.
منابع مشابه
NusA changes the conformation of Escherichia coli RNA polymerase at the binding site for the 3' end of the nascent RNA.
A conformational change in Escherichia coli RNA polymerase induced by NusA was detected by utilizing photocrosslinking. A change in the binding site for the 3' end of the RNA occurred, and NusA increased interactions of the RNA with the beta subunit of the polymerase. NusA was not contacted by the 3' end of the RNA.
متن کاملAntisense oligonucleotide-stimulated transcriptional pausing reveals RNA exit channel specificity of RNA polymerase and mechanistic contributions of NusA and RfaH.
Transcript elongation by bacterial RNA polymerase (RNAP) is thought to be regulated at pause sites by open versus closed positions of the RNAP clamp domain, pause-suppressing regulators like NusG and RfaH that stabilize the closed-clampRNAP conformation, and pause-enhancing regulators like NusA and exit channel nascent RNA structures that stabilize the open clamp RNAP conformation. However, the...
متن کاملTranscription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.
NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA...
متن کاملCharacterization of monoclonal antibodies against Escherichia coli core RNA polymerase.
Multiple interactions with DNA, RNA and transcription factors occur in a transcription cycle. To survey the proximity of some of these factors to the Escherichia coli RNA polymerase surface, we produced a set of nine monoclonal antibodies (mAbs) against the enzyme. These mAbs, located at different places on the surface of the enzyme, were used in a co-immunopurification assay to investigate int...
متن کاملDetermination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy
In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 37 شماره
صفحات -
تاریخ انتشار 2009